skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gujarathi, Pranav Dhananjay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Research articles published in medical journals often present findings from causal experiments. In this paper, we use this intuition to build a model that leverages causal relations expressed in text to unearth factors related to Sjögren’s syndrome. Sjögren’s syndrome is an auto-immune disease affecting up to 3.1 million Americans. The uncommon nature of the disease, coupled with common symptoms with other autoimmune conditions make the timely diagnosis of this disease very hard. A centralized information system with easy access to common and uncommon factors related to Sjögren’s syndrome may alleviate the problem. We use automatically extracted causal relationships from text related to Sjögren’s syndrome collected from the medical literature to identify a set of factors, such as “signs and symptoms” and “associated conditions”, related to this disease. We show that our approach is capable of retrieving such factors with a high precision and recall values. Comparative experiments show that this approach leads to 25% improvement in retrieval F1-score compared to several state-of-the-art biomedical models, including BioBERT and Gram-CNN. 
    more » « less